Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
63
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO
AUTÓNOMO EN EL APRENDIZAJE DE LA ASIGNATURA DE MATEMÁTICA
FINANCIERA
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
AUTOR: Juan Carlos Cevallos Hoppe
1
DIRECCIÓN PARA CORRESPONDENCIA: juan.cevallos@uleam.edu.ec
Fecha de recepción: 12-05-2019
Fecha de aceptación: 22-07-2019
RESUMEN
En la Educación Superior en el Ecuador, se proyectan cambios que persiguen incrementar la
calidad de ésta desde su dimensión pública. Uno de los cambios esenciales va dirigido a la
reevaluación del rol del docente universitario como guía conducente del proceso de enseñanza-
aprendizaje, haciendo corresponder lo que se enseña desde la cátedra con lo que asimila el
estudiante y su concreción en práctica. Es muy importante conseguir que los estudiantes
adquieran los conocimientos necesarios para el estudio, la solución de los problemas financieros
y en general para una posterior toma de decisiones, correlacionadas en los logros de aprendizaje
planteados. Los resultados muestran que los educandos presentan condicionantes en el desarrollo
del trabajo autónomo y la diversificación metodológica para la aplicación del mismo, dejando a
entrever una intelectualidad heterónoma. El nuevo escenario en la educación universitaria destaca
la elección de una filosofía de fondo basada en el trabajo del estudiante, conllevando a un nuevo
enfoque de la enseñanza. Aquello; más la adaptación de un sistema de aprendizaje autónomo
tutorado, permitirá de manera independiente la construcción e interpretación significativa del
conocimiento. Profundizar en determinados aspectos del programa académico que conlleven a la
consecución de las competencias concerniente a la asignatura de Matemática Financiera,
facilitando la búsqueda, organización, relación y análisis de la información financiera a través de
las formulaciones matemáticas que por limitaciones de tiempo no son abordadas en el aula.
Posteriormente plasmarlos en un trabajo llamado también autónomo, que evidencie los
requerimientos anteriormente descritos.
PALABRAS CLAVE: Educación superior; estrategias metodológicas; enseñanza-aprendizaje;
matemática financiera; trabajo autónomo.
EVALUATION OF THE METHODOLOGICAL STRATEGIES OF THE
AUTONOMOUS WORK IN THE LEARNING OF THE SUBJECT OF FINANCIAL
MATHEMATICS
ABSTRACT
In the Ecuadorian higher education, changes are projected to increase its quality from its public
dimension. One of the essential changes is directed to the re-evaluation of the teacher as a
conducive guide from the process of teaching-learning, making reciprocate since professorship
1
Magíster en Educación Superior, Licenciado en Mecánica, Diploma Superior en Educación Universitaria por
competencias. Profesor Titular de la asignatura Matemática Financiera en la Carrera de Contabilidad y Auditoría de
la Universidad Laica Eloy Alfaro de Manabí. Manta. Ecuador.
Juan Carlos Cevallos Hoppe
64
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
with everything the student assimilate and their concretion in practice. It’s very important to
chase that student get the required knowledge to the Study, answer to financial problems and in
general for decision taking, correlated in learning achievements. Results show that learners report
conditioning inside the development of Autonomous work and the methodological diversification
to its own application, letting glimpse and heteronomous intelligentsia. The new scenario in
higher education stands out the choice of a background philosophy based on student work,
leading to a new approach of teaching. This, plus the adaptation of an autonomous tutored
learning, will allow in an independent way the construction and meaningful interpretation of
knowledge. Deepen in certain aspects of academic program that carry to the achievement of skills
relating to Financial Mathematics subject, easing the research, organization, association and
analysis of financial information through mathematical formulations that aren’t addressed in
classroom because of time limitations. Later, it will be translated in this also called Autonomous
work, that show the requirements described above.
KEYWORDS: Higher education; methodological strategies; teaching-learning; financial
Mathematics; autonomous work.
INTRODUCCIÓN
En el Encuentro Internacional de Educación Superior celebrado en el año 2013 se estableció
como una de las 20 claves educativas para el 2020 la necesidad de formar al ciudadano del Siglo
XXI, que debe caracterizarse por ser creativo, emprendedor, crítico, competente, autónomo, con
altos dotes sociales y que se adapte fácilmente a los más diversos ambientes laborales.
Ante este planteamiento se reconoce que los discentes han de ser formados sobre la base de la
autonomía y la flexibilidad, donde la tarea fundamental del profesor no es la transmisión
dogmática de conocimientos, sino la formación de competencias profesionales, aprovechando las
potencialidades de los estudiantes, favoreciendo con esto el desarrollo de un modelo educativo
innovador.
En este marco el profesor debe brindar al estudiante, además de los contenidos necesarios para su
formación, las herramientas y recursos imprescindibles para que éstos puedan desempeñarse con
calidad y eficiencia una vez egresados, orientándolos en su proceso de búsqueda y tratamiento de
la información, para que sean ellos quienes de manera activa y experimental construyan su propio
conocimiento.
La pieza clave de la innovación docente universitaria radica en desplazar su punto de gravedad
desde el énfasis en la enseñanza hacia la prioridad del aprendizaje. De este modo, la principal
función del profesor universitario es posibilitar, facilitar y guiar al estudiante para que pueda
acceder intelectualmente a los contenidos y prácticas profesionales de una determinada disciplina
(Herrera, 2007).
Hacer énfasis en el trabajo del docente dentro del aula es importante en esta investigación, según
Herrera (2007), este debe ser activo, dinámico, participativo, profesional y humano; como una de
las condiciones para que los estudiantes fortalezcan su aprendizaje y amplíen sus conocimientos,
permitiendo mejorar su rendimiento, alcanzando un aprendizaje productivo, mejorando el
desarrollo y los cambios mentales para obtener los resultados esperados de una clase.
Para ello se requiere un sistema de aprendizaje autónomo y tutorizado, que facilitará al estudiante
la construcción del conocimientos e interpretación significativa del mundo que lo rodea, para lo
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
65
cual es imprescindible considerar que el aprendizaje ha de concebirse como un proceso que tiene
lugar a lo largo de toda la vida (Herrera & Cabo,2008).
Se comparte con Coll (2001) el criterio de este proceso debe descansar en el desarrollo de
estrategias fundamentadas en principios de tipo constructivista que permitan al estudiante
aprender a aprender, generando un ambiente que propicie el incremento de la autonomía personal
de los estudiantes y fomente el pensamiento crítico y la reflexión sobre el proceso de aprendizaje.
Las referencias presentadas por Herrera & Cabo (2008); Coll (2001); son coincidentes para el
presente trabajo, en el cual se asume que la concepción del aprendizaje autónomo como tal
implica que el estudiante genere su propio conocimiento bajo la ayuda tutorizada del docente. Las
estrategias que se proponen en este trabajo se fundamentan en los principios constructivistas, y
están orientadas al incremento de la autonomía personal y la fomentación del pensamiento crítico
en los discentes.
Los profesores deben implementar las estrategias de enseñanza y estas, se conciben como los
procedimientos utilizados por los mismos para promover aprendizajes significativos, implican
actividades conscientes y orientadas a un fin.
Las estrategias cuando son centradas en el estudiante, se denominan estrategias activas, estas se
basan en el enfoque cognitivo de aprendizaje y se fundamentan en el autoaprendizaje. (Parra,
2008).
Es necesario destacar que el estudiante esté en condiciones de cuestionar o evaluar la información
que recibe y las instrucciones proporcionadas por el docente, porque ha desarrollado los
elementos necesarios para crear nueva información, nuevos procedimientos y métodos
alternativos. Las estrategias más representativas centradas en el estudiante y que son aplicadas
para un significativo aprendizaje en la asignatura de matemática financiera, son: aprendizaje
basado en problemas y el método de situaciones o de casos.
Aprendizaje basado en problemas (ABP): Es una estrategia de enseñanza-aprendizaje en la que se
inicia con un problema real o realístico, en la que un equipo de estudiantes preferentemente
reducido se reúne para darle solución (Morales & Landa 2004).
Métodos de Situaciones o de Casos: Son aquellos en los cuales se describe una situación o
problema similar a la realidad (ya sea tomado de una organización ficticia o real) que contiene
acciones para ser valoradas y llevar a vía de hecho un proceso de toma de decisiones (Parra,
2008).
Existen también las estrategias centradas en el docente y adquieren su validez cuando en el
proceso de enseñanza aprendizaje intervienen factores que impiden o limitan la aplicación de
estrategias interactivas, tales como que el conocimiento que se va a impartir es más informativo
que constructivo o como que el tiempo o el ambiente académico es limitado y necesario recurrir a
tesis ya comprobadas y procedimientos estandarizados (Parra: 2008).
Con el Aprendizaje Autónomo se pretende la activación en el estudiante de una serie de procesos
cognitivos básicos, que incluyan la selección y retención de la información, la organización y
elaboración de nueva información, la integración de la misma en los conocimientos que posee y
su aplicación a las nuevas situaciones de aprendizaje (Rodríguez, 2004).
En el desarrollo de la asignatura de matemática financiera se pretende a través del trabajo
autónomo, que el estudiantado profundice en determinados aspectos del programa, aprendiendo a
Juan Carlos Cevallos Hoppe
66
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
buscar, relacionar, analizar, información que por limitaciones de tiempo, es imposible trabajar
con mayor profundidad durante las sesiones de clases.
Por ello la metodología del trabajo autónomo persigue los siguientes objetivos, según la autora
Sales Ciges (2006):La Reflexión Individual sobre las experiencias educativas previas de los
estudiantes, el aporte de soluciones creativas a aspectos tratados en la asignatura, en los que no se
ha podido incidir tanto por falta de tiempo, análisis y/o elaboración de materiales didácticos,
desarrollo de estrategias y capacidades de investigación, partiendo de hipótesis de trabajo, que
permitan relacionar la teoría y la práctica y los trabajos de campo que acerquen el día a día
académico y permita conocer las actitudes de las comunidades educativas hacia la atención a la
diversidad, proponiendo en su caso, estrategias de cambio y mejora.
La matemática financiera es una disciplina que tiene por objeto el estudio de un importante
cuerpo de fenómenos de la actividad económica conocidos con el nombre de operaciones
financieras (García; Luque & Rodríguez 2011).
En el caso de la Matemática Financiera esta se lleva a cabo a través de la consecución de unos
objetivos, que sirvan a la realidad económica financiera, a partir de unos contenidos, que
permitan adquirir unas competencias y conlleven apuntar al logro de aprendizaje, mediante la
metodología adecuada, es decir, se busca compatibilizar el rigor científico con el estudio práctico
de las operaciones financieras en su sentido más amplio (Sarmiento y Sánchez 2007).
Los contenidos deben abordar conceptos e instrumentos básicos de la operatoria de los mercados
financieros, como fundamento de valoración financiera, leyes financieras clásicas, la valoración
de rentas, las operaciones financieras más habituales a corto y largo plazo, en los ámbitos
bancarios y empresariales (Cevallos, 2015).
Las operaciones financieras son aplicables e imprescindibles en otras teorías como la
contabilidad, aportando información sobre las operaciones comerciales realizadas por las
empresas y permitiendo tomar la decisión más idónea a la hora de realizar una inversión; la
legislación, ya que a través de las leyes se regula la propiedad de los bienes, la forma en que se
puede adquirir los contratos de compra y venta, los instrumentos financieros; la administración
financiera, en ella se trabaja con activos financieros como bonos o acciones que forman parte del
currículo de la asignatura objeto de estudio en esta investigación (Cevallos 2015).
DESARROLLO
La exigencia de utilizar nuevas metodologías para intervenir directamente en el aprendizaje
autónomo de los estudiantes, conlleva a potenciar nuevas habilidades y destrezas que posibiliten
la formación académica del estudiante con el fin de satisfacer las demandas sociales y
empresariales, capaz de que el sujeto transformado enfrente y resuelva los problemas en los más
variados escenarios.
Una de las áreas importantes en la formación profesional es la matemática y en la Carrera de
Contabilidad y Auditoría (CCA), tiene incidencia específica en la Matemática Financiera. De allí
que las estrategias metodológicas para realizar el trabajo autónomo en los estudiantes serán las
más pertinentes que tengan un impacto favorables en la formación integral del estudiante.
Por lo tanto el trabajo autónomo se considerará como una de las herramientas más importante
para la construcción de los conocimientos en la asignatura de Matemática Financiera.
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
67
El objetivo principal de esta investigación es proponer lineamientos metodológicos para la
orientación del trabajo autónomo de los estudiantes en asignaturas de la unidad curricular básica,
tomando como objeto de estudio la asignatura de Matemática Financiera de la Carrera de
Contabilidad y Auditoría (CCA) de la Universidad Laica “Eloy Alfaro” de Manabí (ULEAM).
A su vez, se buscará caracterizar las estrategias metodológicas que se aplican por parte de los
docentes en la carrera objeto de estudio bajo un diagnóstico de la situación que presentan en
torno al trabajo autónomo los estudiantes de tercero y cuarto nivel de los períodos académicos
2014 (2), 2015 (1) y 2015 (2) de la CCA.
La investigación se realizó en la Universidad Laica “Eloy Alfaro” de Manabí, perteneciente al
sistema universitario de administración pública; la sede está ubicada en el Cantón Manta de la
provincia de Manabí. Allí se encuentra la Carrera de Contabilidad y Auditoría con la sigla CCA,
encargada de la formación de los profesionales de Contabilidad y Auditoría a quienes otorga la
titulación de Ingenieros en Contabilidad y Auditoría.
La investigación se realizó durante el segundo semestre del período lectivo 2014-2015; y el
primero y segundo semestre del período lectivo 2015-2016 y tuvo como universo doscientos
ochenta estudiantes de la asignatura de Matemática Financiera en la carrera de Contabilidad y
Auditoría.
Siguiendo el enfoque mixto cuanti-cualitativo, el universo está conformado por N= 280
estudiantes que es el 100% de los niveles terceros y cuartos comprendido entre los períodos
2014-2015 (2); 2015-2016 (1) y 2015-2016 (2) y N= 7 docentes que representan el 100% de la
población que imparten e impartieron la asignatura de Matemática Financiera en la Carrera de
Contabilidad y Auditoría en la Universidad Laica “Eloy Alfaro” de Manabí durante esos
períodos.
A través de un muestreo no probabilístico, específicamente el muestreo intencional o de
conveniencia por parte del investigador se seleccionó a cien estudiantes quienes realizaron sus
actividades académicas durante esos períodos y que actualmente están en períodos inmediatos
superiores y presentaron falencias cognitivas, relacionadas a deficiencias en el desarrollo del
trabajo autónomo.
Tabla 1.- Período 2014-2015 (2). Determina el número de estudiantes con problemas referentes con el
aprendizaje de la asignatura, excogitados para la encuesta.
Estudiantes encuestados en los diferentes niveles en el período 2014-2015 (2)
Niveles
Número de Estudiantes
Encuestados
Tercero A
26
10
Cuarto A
28
10
Cuarto B
32
10
Fuente: Secretaria de la Carrera Contabilidad y Auditoría. ULEAM
Juan Carlos Cevallos Hoppe
68
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
Tabla 2.- Período 2015-2016 (1). Determina el número de estudiantes con problemas referentes con el
aprendizaje de la asignatura, excogitados para la encuesta.
Estudiantes encuestados en los diferentes niveles en el período 2015-2016 (1)
Niveles
Número de Estudiantes
Encuestados
Cuarto A
26
10
Cuarto B
28
10
Cuarto D
28
10
Fuente: Secretaria de la Carrera Contabilidad y Auditoría. ULEAM
Tabla 3.- Período 2015-2016 (2). Determina el número de estudiantes con problemas referentes con el
aprendizaje de la asignatura, excogitados para la encuesta.
Estudiantes encuestados en los diferentes niveles en el período 2015-2016 (2)
Niveles
Número de Estudiantes
Tercero A
26
Tercero B
28
Cuarto A
28
Cuarto B
30
Fuente: Secretaria de la Carrera Contabilidad y Auditoría. ULEAM
Procedimiento de recolección de datos
El enfoque investigativo mixto, orientó la recolección de datos para que la información obtenida
tenga una perspectiva más amplia y más significativa. Así, un primer momento: desde el enfoque
cualitativo se analizó la forma como se ha venido desarrollando el trabajo autónomo a criterio de
los docentes y de manera empírica; y desde lo cuantitativo, la recolección de la información se
realizó por medio de una encuesta que fue el instrumento que exploró a toda la muestra de
estudiantes participantes en el estudio.
El instrumento estuvo delimitado por los objetivos, las variables e indicadores respectivos, con la
intencionalidad de abordar tanto la información delimitada dentro del marco instruccional
(normas) y las demás como alternativas abiertas para conocer los saberes del estudiante en este
rol de independencia académica. El lugar para la recolección se dio en sus aulas, administrando
las encuestas en un tiempo determinado.
En un segundo momento: para la obtención de la información orientada por el enfoque
cuantitativo también, se procedió a seleccionar los siete docentes, para llegar a la aplicación de
una encuesta para ellos cuya información fue delimitada en un enfoque de seis preguntas
específicas que a criterio de los expertos, docentes y el autor de esta investigación, encerraban los
aspectos más relevantes para el aprendizaje de la asignatura objeto de estudio.
Encuesta a estudiantes
Se optó como referencia base el Cuestionario de Técnicas de Estudio diseñado por Herrera y
Gallardo (2006) cuya investigación analizaron las estrategias de aprendizaje que empleaban los
estudiantes en el espacio europeo. El investigador de este trabajo tomó como referencia las
dimensiones para el estudio relacionadas con las técnicas de estudio de los estudiantes de la
carrera de Contabilidad y Auditoría contextualizando el problema que advierte la investigación,
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
69
generando la encuesta para los discentes que presentaron inconvenientes en el aprendizaje de la
asignatura.
La encuesta, dispuso de una estructura con preguntas abiertas y cerradas con opciones múltiples a
seleccionar; dado por las características de la investigación educativa y que se explicita a
continuación.
El contenido dispuso de cincuenta y cuatro preguntas; ordenadas en relación con las bases
conceptuales del proceso y las condiciones utilizadas para el desarrollo del trabajo autónomo en
la asignatura de matemática financiera, siendo: Falencias Cognitivas; Entornos de aprendizaje del
trabajo autónomo; Organización del trabajo autónomo; Razonamiento lógico para el trabajo
autónomo; Creatividad para el trabajo autónomo y organización del trabajo previo al trabajo
autónomo.
Encuesta a docentes
El formato de encuesta aplicado a los docentes que impartieron la asignatura de matemática
financiera en los períodos considerados para la aplicación, dispuso de preguntas que orientaron
los objetivos y se consideraron relevantes al propósito de la investigación.
La misma posee un 0,91 de índice de consistencia interna lo que le hace merecedora a un grado
alto de fiabilidad, descrito gracias a la aplicación del coeficiente del Alfa de Cronbach utilizando
el método de la varianza de los ítems.
La encuesta cuya información fue delimitada en un enfoque de seis preguntas específicas que a
criterio de los expertos, docentes y el autor de esta investigación, encerraban los aspectos más
relevantes para el aprendizaje de la asignatura objeto de estudio.
Proceso de análisis de los datos
Análisis cuantitativo: Para el tratamiento de los datos y obtención de los resultados se emplearon
programas informáticos Excel y SPSS, siendo de importancia para la presente investigación el
cálculo de la prueba Chi-Cuadrado y el nivel de significancia, presentados en tablas y gráficos.
Además, para confirmar un resultado más relevante se utilizó la prueba no paramétrica de
Kruskal-Wallis relacionando el análisis de las respuestas en función de los paralelos en los
diferentes períodos (terceros y cuartos semestres).
La utilidad de este método estadístico para el análisis cuantitativo facilitó la presentación de los
datos relativos. Además, el uso de este tipo de análisis estadístico destaca la relación matemática
de los datos, las respuestas de los estudiantes y las características de los docentes en relación a los
conocimientos impartidos y esperados para la asignatura objeto de estudio.
Los resultados obtenidos es el tratamiento dado a la variable cuantitativa, trabajo autónomo de los
estudiantes de la CCA de la ULEAM en el segundo semestre del 2014-2015; y los dos períodos
semestrales del 2015-2016.
Análisis cualitativo: El análisis cualitativo fue el proceso de interpretación realizado a la variable:
Estrategias metodológicas para el trabajo autónomo en la asignatura de matemática financiera.
Después de obtenida la información por medio de una encuesta aplicada a los docentes que
impartieron la asignatura, se encontró detalles complejos e importantes para el estudio. El
procedimiento aplicado fue: descripción de la muestra, ordenación y codificación de datos.
Juan Carlos Cevallos Hoppe
70
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
Análisis de resultados
Variable 1: Estrategias metodológicas para el trabajo autónomo en la asignatura de
Matemática Financiera en la CCA de la ULEAM”.
La metodología investigativa fuera del aula, propone modelos de interacción constructivista entre
los docentes y las instituciones de educación superior para que transforme su práctica hacia un
aprendizaje profesional dinámico, capaz de actualizar el ámbito de su profesión y del aula
universitaria; con el propósito de movilizar las estructuras cognitivas del estudiante en un proceso
autónomo e interactivo para la investigación.
Esta variable fue estructurada bajo seis indicadores que se analizarán a continuación con sus
respectivos ítems que serán analizados de manera cualitativa en relación a la experiencia docente
sobre la forma de aplicar el trabajo autónomo. Todos los aspectos, fueron desarrollados de
manera empírica en la práctica de la docencia en la CCA de la ULEAM durante los períodos en
revisión.
Componente metodológico del trabajo autónomo: El nuevo paradigma lleva a concebir el
aprendizaje como un proceso de construcción del significado. En este sentido, el estudiante de la
CCA de la ULEAM no se limita a adquirir el conocimiento sino que lo construye. Le resulta más
activo e inventivo, y su papel se corresponde al de un ser autónomo, autorregulado, que conoce
sus propios procesos cognitivos y tiene en sus manos el control del aprendizaje.
En el nivel de estudio que participa el estudiante se trabaja mediante un sistema didáctico que
permite al mismo adquirir los conocimientos suficientes y contar con ellos de modo que se
sientan capaces de interpretar y desarrollar múltiples casos y/o problemas encaminados a conocer
el valor del beneficio de las inversiones y el valor del dinero en el tiempo.
Con ello la metodología puede ser representada en las siguientes aplicaciones: Exposición de
contenidos; Resolución de problemas por el catedrático; Resolución de problemas por los
estudiantes; Aprendizaje cooperativo; Utilización de recursos informáticos; Análisis y control de
lecturas concerniente a la asignatura; Elaboración de ensayos y las Prácticas Individuales o
Grupales
Trabajo autónomo mediante portafolio electrónico de la asignatura de Matemática Financiera en
la ULEAM: Como un método de enseñanza y evaluación del aprendizaje en la asignatura de
matemática financiera fue implementado el portafolio electrónico por parte del docente hacia los
estudiantes.
Se destacó como una fortaleza para trabajar la investigación de orden autónoma en la asignatura
por parte del discente. Se utilizó también el método de resolución de problemas como estrategia
fundamental para el aprendizaje de la investigación. La construcción y resolución de ejercicios
y/o problemas proporcionales a los desarrollados en el aula de clase, fueron uno de los
parámetros esenciales en la construcción de esta técnica de aprendizaje.
A través de la experiencia docente por parte del investigador de este trabajo, la estructura del
portafolio electrónico de la asignatura fue implementada en el período 2013 hasta la presente de
la siguiente estructura:
- Introducción
- Ensayos referentes a la asignatura de matemática financiera
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
71
- Filosofía de Aprendizaje
- Objetivos frente a la filosofía del aprendizaje
- Objetivo General
- Objetivos Específicos
- Responsabilidad del estudiante
- Contenido de la asignatura: Dependiendo del semestre que cursa el estudiante, éste genera
y desarrolla ejercicios y/o problemas en cada unidad curricular asignada.
Tercer Semestre: Nociones básicas de Matemática e Introducción a la Matemática
Financiera; Valor del dinero en el tiempo e interés simple; Interés compuesto y
Descuento.
Cuarto Semestre: Anualidades; Amortización, fondos de amortización e hipotecas;
Mercado de capitales y sistema financiero y los Indicadores de evaluación financiera.
- Estrategias metodológicas expresadas para el aprendizaje.
- Metas y propósitos inmediatos
- Conclusiones
- Referencias bibliográficas
- Anexos.
Tabla 4.- Tabla que referencia las estrategias metodológicas para el trabajo autónomo del estudiante de la CCA
en la ULEAM.
Tabla presentada por el investigador, en donde destaca las estrategias metodológicas para realizar
el trabajo autónomo en la asignatura de matemática financiera.
Estrategias metodológicas para el trabajo autónomo del estudiante de CCA
Clases presenciales
Clases Teóricas: Las clases teóricas tendrán una duración de cinco horas
semanales para cuarto semestre.
El docente expone y explica detalladamente los conceptos y desarrollos
teóricos de cada unidad, haciendo hincapié en los aspectos más relevantes
para su comprensión.
Se orientará al estudiante en el análisis de la información disponible y su
aplicación en la toma de decisiones financieras y sus aspectos de orden
matemáticos.
Clases prácticas: La proporcionalidad de horas teóricas están
evidenciando en las prácticas.
Las actividades que se desarrollan en clases son:
Resolución de ejercicios y/o problemas prácticos, individualmente
o en grupos máximo de tres personas, aplicando los conceptos y
procedimientos desarrollados en el aula de clases.
Discusión acerca de lectura técnica propuestas relacionadas con las
unidades.
Análisis de casos en los que se participe en las tomas de decisiones
financieras en los casos prácticos.
Trabajo autónomo
El estudiante revisa la información proporcionada en el aula de clases y lo
Juan Carlos Cevallos Hoppe
72
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
correlaciona a través de su trabajo individual; tanto los problemas prácticos
como búsqueda de información, lecturas, resolución de ejercicios,
generación de enunciados y análisis de cada respuesta.
Aprendizaje basado en
problemas (ABP)
El docente utiliza este método de aprendizaje basado en el principio de usar
problemas como punto de partida para las adquisiciones e integración de
nuevos conocimientos.
Aprendizaje Cooperativo
(AC)
El docente formula didácticamente la necesidad de que los estudiantes
trabajen juntos, aprovechando al máximo la interacción entre ellos
generando interdependencia, habilidades sociales, responsabilidad
individual y grupal,
Tutorías
El docente aplica tutorías individuales y/o grupales, orientando a los
estudiantes dependiendo de la dificultad en el proceso de adquisición de
competencias genéricas y específicas de la asignatura.
Evaluación de parcial
Al finalizar el parcial, el docente preparará para el estudiante un examen
teórico- práctico, para valorar el grado de adquisición de las competencias
genéricas y específicas objeto de la asignatura más alcanzar el logro de
aprendizaje requerido.
Fernández Fernández, Loreto (2007). La práctica de las finanzas de empresas. Ed, Delta Publicaciones. Universidad
de Alcalá. Elaborado por: Juan Carlos Cevallos Hoppe.
Los resultados fueron bastante interesantes, una población del 75% del estudiantado que
presentaba actitud para el aprendizaje, correlacionó el conocimiento al presentar su trabajo de
portafolio con su evaluación del parcial. Pero el restante porcentaje no pudo correlacionar lo
estudiado y generado en sus trabajos con la evaluación final.
Por ello es necesario que a través de la otra variable a aplicar dentro de esta investigación, se
analice la forma como trabajan autónomamente este otro porcentaje de estudiantes fuera del aula
de clase.
Aprendizaje Basado en Problemas (ABP): Esta estrategia de aprendizaje fue aplicada de manera
empírica bajo la experiencia de los docentes que impartieron la asignatura de matemática
financiera en los períodos mencionados en la investigación. En ella se maneja el entender, el
generar y resolver problemas de orden financiero por parte del estudiante como mecanismo de
conocimiento propio.
Esto permite al discente diagnosticar sus necesidades de aprendizaje y la importancia de trabajar
colaborativamente, para permitirse desarrollar habilidades de análisis y síntesis de la información
matemática-financiera como parte de las competencias a adquirir.
Aprendizaje significativo: El aprendizaje es un proceso complejo y dentro de esta complejidad, la
actividad del estudiante es uno de los aspectos más importante. Desde el filtrado de la
información, organización, proceso, construcción de los contenidos y de los aprendizajes hasta
finalmente operar a partir de los contenidos permitiéndole desarrollar sus propias habilidades.
Valoración de tutorías: Desde el punto de vista del docente de la ULEAM, la tutoría permite
superar la mera labor expositiva para tomar el papel de orientador de la formación de los
estudiantes. Todo trabajo autónomo, necesita de una aplicación implícita de la tutoría. Desde el
punto de vista metodológico, la ventaja de un buen sistema de tutoría para el estudiante de la
CCA permitirá asumir un rol activo en el proceso de enseñanza-aprendizaje y le obliga a
comprometerse con su desarrollo intelectual. En resumen, la actitud mostrada por el binomio
docente-discente generará un aprendizaje significativo.
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
73
Guía didáctica de la asignatura.- Las modalidades organizativas de enseñanza, las estrategias
metodológicas utilizadas por docente-estudiante, más los criterios y procedimientos establecidos
para la evaluación; deberán ser explícitos y delimitados en una guía que permita al estudiante
conocer que se pretende que adquiera (competencias), que debe hacer para conseguir los
aprendizajes necesarios (logros y contenidos), como puede efectuar su trabajo (actividades a
realizar) y como se le va a evaluar (criterios y procedimientos).
Variable 2: “Condiciones para el desarrollo del trabajo autónomo de los estudiantes de la CCA
de la ULEAM en el segundo semestre del 2014-2015 y los dos períodos semestrales del 2015-
2016”.
Debido a que el trabajo autónomo se desarrolla fuera del aula de clase, se creyó pertinente
analizar las condiciones de estudio en que se desenvuelven los estudiantes de la CCA. De esta
manera podremos intuir los factores que influyen en la generación de su propio conocimiento,
fundamentado en la investigación y en la metodología que permite la creación de problemas
financieros propios de la profesión.
Para consolidar esta variable, el autor de esta investigación creyó necesario analizar seis
indicadores que describen el componente cognitivo de la misma. Los análisis estadísticos
utilizados a través de la prueba Chi-Cuadrado y el error estimado (p 0,0778) para los 54 ítems
dentro de los indicadores, son presentados en tablas que conllevan toda la rigurosidad estadística
para la sostenibilidad de los resultados.
Además, para confirmar un resultado más relevante se utilizó la prueba no paramétrica de
Kruskal-Wallis [de William Kruskal y Allen Wallis (Breslow, 1970)] que permite comprobar si
un grupo de datos provenientes de la misma población (aceptando que k muestras independientes
proceden de la misma población), para el análisis de los indicadores en función del error
estimado (p 0,0778) dentro de los diferentes períodos donde los estudiantes cursaron sus
estudios en los períodos 201-2015 (2) y 2015-2016 (1 y 2) (Tabla 1, 2 y 3).
Vale recalcar que la totalidad de los 54 ítems analizados dentro de la variable 2, resultaron
representativos en forma general para la prueba de Chi-cuadrado mostrando poca dispersión y
mayor relación entre ellos. La prueba no paramétrica del Kruskal-Wallis permitió de manera más
específica denotar los resultados de la encuesta, debido a que puede interrelacionar dos o más
datos (comparación valores de encuesta de los estudiantes de la CCA por paralelos) con el valor
de p 0,0778 similar al de x
2
.
Falencias Cognitivas en el trabajo autónomo.- Los problemas presentados en el aprendizaje de la
matemática durante la vida estudiantil (x
2
=9,983; p= 0,019), se presentaron tanto en el
bachillerato (x
2
=9,025; p= 0,029) como en la universidad (x
2
=10,38; p= 0,016). La característica
resaltante destaca que dichos problemas son visibles en el poco dominio del léxico y el
desconocimiento de la simbología requerida para el dominio de los axiomas matemáticos, que
son requerimientos básicos para el entendimiento de dicha asignatura.
Los docentes que imparten la asignatura en los niveles de aprendizaje, en su mayoría muestran un
escaso dominio de las estrategias metodológicas para trasmitir la información (x
2
=8,899; p=
0,031).
Muchos de ellos “suponen” que los discentes “conocen” la fundamentación elemental de
matemática creando un vacío importante en el mismo, lo que genera la falta de interés propio
hacia la asignatura (x
2
=10,294; p= 0,016) no por sus contenidos sino por la falta de
Juan Carlos Cevallos Hoppe
74
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
entendimiento hacia la misma, quedando en evidencia a través de aquellos estudiantes que llegan
a determinados niveles universitarios (en donde se debe impartir información pertinente al nivel y
concatenada con los sílabos) desprovistos de los fundamentos bases necesarios para la
construcción de conocimientos más avanzados.
Es de relevancia indicar que la causa por la cual el estudiante presenta inconvenientes en el
aprendizaje se debe a los escasos recursos didácticos de enseñanza (x
2
=7,247; p= 0,064).
Al interrelacionar los ítems en la prueba no paramétrica Kruskal-Wallis en la cual nos arroja
resultados más específicos, pudieron ser significativos los indicadores I1.2: los problemas de
aprendizaje de la matemática se dieron en la escuela (x
2
=8,397; p= 0,038) y el I1.5: los escasos
recursos didácticos de enseñanza (x
2
=7,269; p= 0,064). Esto nos permite resaltar el análisis
efectuado a través de Chi-cuadrado, los problemas existentes en matemática se forjan en la base.
La responsabilidad en la impartición de la información matemática debe ser óptima, el docente
debe enseñar al estudiante de los niveles básicos con las mismas características de un estudiante
de un nivel medio y superior; es decir, trasmitirle conocimientos de la realidad donde vive
asociados a la planificación curricular, permitirle que independice su conocimiento desde
temprana edad (autonomía académica) desterrando el aspecto heterónomo que ha venido
primando desde mucho tiempo en la educación ecuatoriana.
Entornos de aprendizaje.- En el indicador I2 se describen los entornos de aprendizaje del trabajo
autónomo, el ítem I2.2; I2.3; I2.4 demuestran que no hay mucha dispersión y por ende relación
de los ítems en esta variable. La ventaja de poseer un lugar donde se pueda estudiar dentro de un
ambiente armonioso y agradable (x
2
=10,174; p= 0,017), compartir con alguien el lugar de
estudio (x
2
=1,654; p= 0,0647) y el poder contar con las herramientas tecnológicas que permitan
colaborar con el aprendizaje (x
2
=8,931; p= 0,030) destacando que puede ser factible el trabajo
autónomo por parte del estudiante de la CCA.
El análisis de los resultados de correlación de los estudiantes por paralelos para el indicador I2
fueron significativos para los ítems I2.1: (x
2
=7,661; p= 0,054) en el que destaca que dispone de
un lugar específico y fijo para desarrollar las actividades académicas fuera del aula y I2.3: (x
2
=13.074; p= 0,004) en la compartición del lugar de estudio para el aprendizaje del trabajo
autónomo por parte de los estudiantes de los terceros y cuartos semestres, en los períodos
tomados en consideración para esta investigación.
Organización del trabajo autónomo.- En el análisis del resultado de este indicador I3 para la
prueba de Chi-cuadrado hay relación entre la mayoría de los 20 ítems de la variable a excepción
del ítem I3.11. Sobre la forma como organizan el trabajo autónomo, los estudiantes relacionan la
comodidad de trabajar solo (x
2
=10,586; p= 0,014), otros consideran pérdida de tiempo el trabajo
en grupo (x
2
=9,383; p= 0,025).
El trabajo tiene como referencia base los conocimientos establecidos en el sílabo de la asignatura
(x
2
=12,270; p= 0,007), los lineamientos básicos y contenidos se entregan por parte del docente
desde el principio del período académico (x
2
=12,108; p= 0,007) y a su vez son entendibles (x
2
=11,678; p= 0,009).
El discente lo desarrolla a medida que avanzan los contenidos del programa de asignatura (x
2
=9,453; p= 0,024), utilizando referencias complementarias adicionales a las entregadas por el
facilitador (x
2
=9,680; p= 0,021) permitiéndole reforzar la información fortaleciendo el
conocimiento (x
2
=12,482; p= 0,006) mediante tutorías personalizadas (x
2
=11,485; p= 0,009).
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
75
En el desarrollo de dicho trabajo presentan facilidades en la estructura y generación de los
contenidos (x
2
=10,954; p= 0,012), utilizando mecanismos o herramientas didácticas (x
2
=8,931;
p= 0,030) contando con las herramientas didácticas-metodológicas necesarias (x
2
=9,636; p=
0,022).
También se consideró para el desarrollo del trabajo autónomo si las bases de matemática básica
que poseen, permiten cubrir las necesidades de la asignatura de matemática financiera (x
2
=11,005; p= 0,012). En algunos casos solicita ayuda de un compañero para entender y estructurar
su trabajo (x
2
=11,005; p= 0,012), logrando presentarlo en el tiempo requerido y bajo los
parámetros establecidos (x
2
=11,233; p= 0,011).
En el indicador I3 los resultados para la organización del trabajo autónomo fueron significativos
en dos ítems. El ítems (I3.1): en donde a la mayoría de los estudiantes los trabajos en grupos le
parecen incómodos y poco agradables (x
2
=6,993; p= 0,072) y el ítem (I3.11): que los estudiantes
esperan que se acerque la fecha de presentación del trabajo para empezar a desarrollarlo (x
2
=11,256; p= 0,010).
Es importante este resultado estadístico, porque relaciona específicamente la no relación que
debería existir entre los conocimientos que debieron ser adquiridos desarrollando el trabajo
autónomo versus los resultados de las evaluaciones que en la mayoría de los casos en los
estudiantes encuestados fueron inversamente proporcionales.
Organización del estudio previo el trabajo autónomo.- El análisis de esta variable para el
indicador I4 bajo la aplicación de la prueba del Chi-cuadrado muestra al igual que los otros
indicadores la relación entre los ítems que lo constituyen. De los 14 ítems existentes, uno no se
correlaciona.
Previo el desarrollo del trabajo autónomo los estudiantes de la CCA planifican su tiempo de
estudio (x
2
=10,427; p= 0,015) y a su vez cumplen con lo planificado (x
2
=10,112; p= 0,018),
permitiéndole verificar si empiezan por los ejercicios y/o problemas que les resultan más difíciles
(x
2
=9,414; p= 0,024). Al contrario de los resultados previos, otros estudiantes estudian o se
preparan sólo antes de los exámenes (x
2
=9,170; p= 0,027) tomando apuntes de las explicaciones
trasmitidas por el docente (x
2
=12,437; p= 0,005) a su vez son copia textuales de lo expuesto (x
2
=8,141; p= 0,043) buscando los términos que desconocen (x
2
=9,238; p= 0,026).
Los últimos ítems de este indicador revelan que surge la autopreparación desde el inicio del
período académico (x
2
=9,785; p= 0,020), también revisan y comparan los apuntes una vez
terminado el examen (x
2
=10,169; p= 0,017) aceptando que las calificaciones obtenidas están
acorde con el conocimiento o el esfuerzo dado (x
2
=11,764; p= 0,008).
En el ítems I4.8 la prueba Kruskal-Wallis en comparación a la de Chi-cuadrado arroja resultados
significativos en un solo ítem: de la información presentada en clase, los estudiantes copian los
apuntes de sus compañeros e incluso le sacan copia (x
2
=8,744; p= 0,033).
Existen estudiantes que no relacionan la impartición de información numérica cognitiva por parte
del docente con sus respectivos apuntes. La mayoría de los discentes copia los apuntes en las
clases de matemática financiera, siendo el orden la prioridad al momento del aprendizaje, ellos no
aplican el formato vertical para el desarrollo de los problemas y además utilizan esferográficos
que no permiten borrar algún error cometido incidiendo en los tachones comunes.
Juan Carlos Cevallos Hoppe
76
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
Los aspectos destacados anteriormente aunque no parezcan influyentes aparecen como
distractores dentro del aprendizaje de esta asignatura, los cuales pueden ser factores que incidan
en las dificultades dentro de la asimilación de contenidos de matemática financiera. Pues son
contenidos que requieren sistematización, orden y constancia para su estudio de forma tal que se
logre una comprensión adecuada de éstos para su futura aplicación.
Razonamiento lógico.- El análisis realizado a través de las pruebas no paramétricas de Chi-
cuadrado para determinar las características del razonamiento lógico para el desarrollo del trabajo
autónomo, mostró la relación existente entre los cuatro ítems que componen este indicador.
Los estudiantes relacionan el estudio de la asignatura de matemática financiera con otras
asignaturas (x
2
=12,335; p= 0,006) permitiéndoles interpretar los problemas propuestos en las
diferentes tareas (x
2
=10,898; p= 0,012). También aportaron información acerca de las
dificultades que presentaban para seguir las instrucciones dadas por el docente en clase (x
2
=9,948; p= 0,019) y la estructuración de los análisis de las respuestas obtenidas en dicha
información (x
2
=10,139; p= 0,017).
Al aplicar la prueba no paramétrica para este indicador, curiosamente no mostró relación entre los
ítems. El alto índice de dispersión puede deberse a la subjetividad de estas respuestas dadas por
los estudiantes en cada uno de los paralelos y no las relaciona entre sí.
Creatividad para el trabajo autónomo.- El análisis realizado a través de las pruebas no
paramétricas de Chi-cuadrado para determinar las características en el indicador I6 que analiza la
creatividad del estudiante para el desarrollo del trabajo autónomo, mostró la relación existente
entre los cinco ítems que componen este indicador.
La parte fundamental para demostrar el aprendizaje autónomo de la asignatura de matemática
financiera es la creación de ejercicios y/o problemas cumpliendo con las condiciones cognitivas
descritas por el docente (x
2
=11,978; p= 0,007) utilizando el aprendizaje significativo (x
2
=10,328; p= 0,016) que relaciona la metodología basada en la investigación y el aprendizaje por
proyectos tutorizados por el facilitador (x
2
=12,460; p= 0,006).
Los soportes informáticos dentro del nivel de tecnología también son muy importantes (x
2
=8,851; p= 0,031), más el apoyo de guías didácticas como referencias para la generación de su
propia información (x
2
=9,903; p= 0,019).
El análisis realizado a través de las pruebas no paramétricas Kruskal-Wallis curiosamente no
mostró relación entre los ítems. Al igual que el indicador cinco, el investigador considera que el
alto índice de dispersión puede deberse a la subjetividad de las respuestas dadas por los
estudiantes en cada uno de los paralelos y no las relaciona entre como lo referencia la tabla 15
cuyos valores de significancia vuelven a ser mayores a 0,0787.
Resultados de las encuestas aplicadas a los profesores que imparten la asignatura de
Matemática Financiera en la CCA de la ULEAM.
El autor de la investigación ha creído conveniente analizar los aspectos cognitivos relevantes a
través de seis preguntas que se elaboró para que sean contestadas por el otro baluarte del proceso
enseñanza-aprendizaje que es el docente. Para ello, se encuestó a los profesores que imparten y
que impartieron la asignatura en la CCA en los respectivos períodos donde se aplicó la
investigación.
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
77
Cabe destacar de esta investigación que la encuesta cuenta con el aporte de expertos, docentes
que dictan la cátedra y sus vivencias dentro de las mismas para la determinación de las preguntas.
El índice de correspondencia interna es de 0,91 medido a través del coeficiente Alfa de Cronbach
aplicando el método de la varianza de los ítems, lo que da fiabilidad a la encuesta tomada en
consideración como instrumento.
Pregunta 1: Posicione del 1 al 5 los factores que según su consideración tributan en mayor
medida al desarrollo del aprendizaje efectivo en los estudiantes
Entre los factores considerados con mayor tributación al aprendizaje de los estudiantes en la
asignatura de Matemática Financiera, se consideró: Los recursos didácticos de enseñanza;
Dominio de las estrategias metodológicas por parte del docente; Interés propio del estudiante para
la asignatura; Instrucción básica de Matemática apropiada; Confianza en el estudiante para el
desarrollo de problemas.
Los resultados obtenidos a partir del máximo de calificación, donde la encuesta aplicada a dos
docentes (que representa un 28,57 %) reconoció como el criterio que en mayor medida aporta al
desarrollo del aprendizaje efectivo en los estudiantes son los recursos didácticos para la
enseñanza. En segundo lugar porcentual se le atribuye al dominio de las estrategias
metodológicas por parte del docente, donde dos de ellos (28,57 %) consideraron que era el que
más influía en el desarrollo del aprendizaje efectivo.
El resto de los criterios fueron considerados en menor medida, donde sólo un docente señaló que
el criterio que más influía era el interés propio del estudiante, al igual que la confianza que
tuvieran en mismo para enfrentar los problemas. Así mismo, sólo un docente manifestó que el
criterio que más influía era la instrucción básica con que contarán los estudiantes revelándose así
la importancia que se le atribuye a las estrategias de enseñanza y el uso de los para el proceso de
enseñanza aprendizaje.
Pregunta 2: ¿Según su criterio los estudiantes realizan esfuerzos para el estudio de los ejercicios
enviados en forma autónoma para fortalecer el conocimiento?
Se describe que el 71,43 % de los docentes reconoce que los estudiantes se esfuerzan por cumplir
con las orientaciones dadas para el trabajo autónomo; mientras que un 28,57 % manifiesta que
esto ocurre muy pocas veces. No hubo señalamiento a la alternativa “nunca”, debido a que la
experiencia del docente en la CCA describe que los estudiantes se preocupan por entregar su
información.
Pregunta 3: ¿Cómo docente, considera que la orientación de los lineamientos bases influye
positivamente en el desarrollo del trabajo autónomo en los estudiantes?
Los docentes reconocen la importancia de la adecuada orientación de los lineamientos bases para
el estudio independiente como uno de los elementos esenciales para potenciar el desarrollo del
trabajo autónomo y asegurar su calidad. Mientras que un 85,71 % afirma que sólo a veces esto se
cumple, el 14,29 % asegura que siempre es así; no obstante, es necesario señalar que el 100% de
los docentes coincide en reconocer el papel significativo que esto cumple
Pregunta 4: ¿Considera usted que las tutorías o la atención personalizada limitan la independencia
cognoscitiva y creatividad de los estudiantes? Argumente su respuesta.
El 28,57% de los docentes respondieron que sí limitaba la creatividad y la independencia.
Argumentaron sobre todo, que desde las tutorías existe una tendencia a la transmisión de
Juan Carlos Cevallos Hoppe
78
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
experiencias y conocimientos en donde el tutor busca perpetuar en los estudiantes limitando que
estos puedan desde sus propias experiencias llegar a nuevas ideas y conocimientos, pues ellos
tienden a seguir los pasos e ideas del tutor tratando de justificarlas en todo caso sin una visión
crítica. El 57,14 % de los docentes considera que las tutorías no limitan la independencia
cognoscitiva y la creatividad de los estudiantes, sin embargo un 14,29 % refiere que en cierta
medida sí lo hace y un 28,57 % considera absoluta la limitación.
Los que consideran que en cierta medida justifican sobre todo su criterio en que muchas veces en
las tutorías y la atención personalizada se desarrollan patrones paternalistas inconscientemente
que interfieren en que los estudiantes puedan desenvolverse de manera independiente y creativa,
otro de los criterios en cuanto a esto estuvo referido en que muchas veces los estudiantes se
amparaban en las tutorías para disminuir los esfuerzos que debía hacer al estudiar y tratar de
obtener las respuestas de manera un poco más fácil, y esto incidía inevitablemente en el
desarrollo de sus habilidades limitándolas en cierto grado.
Pregunta 5: ¿Considera que el desarrollo del trabajo autónomo en los estudiantes depende del
docente, del estudiante o de ambos?
Los docentes encuestados: uno considera que el desarrollo del trabajo autónomo depende
totalmente del docente, dos refieren que esto depende sobre todo de la actitud del estudiante
mientras que; cuatro docentes afirman que ambos desempeñan un rol importante en el desarrollo
del trabajo autónomo. Coincidimos con que para lograr esto es tan importante la función del
docente y su adecuada orientación de los lineamientos que guían el trabajo autónomo. También la
actitud de los estudiantes ante el desarrollo del trabajo independiente; así como, sus intereses de
superación y aprendizaje.
Pregunta 6: ¿Considera necesario el uso de plataformas digitales, sistema multimedia u otros
recursos para motivar y generar información útil y pertinente?
La mayoría de los docentes (57,14%) reconocen la importancia que tiene el uso de los recursos
tecnológicos en los actuales momentos para lograr incrementar los índices de motivación hacia
las actividades autónomas en los estudiantes. Estas, presentan información útil, actualizada y
pertinente de forma tal que el conocimiento se produzca adecuado a la formación profesional que
la sociedad requiere en la actualidad.
Una vez analizado las respuestas por parte de los docentes, el investigador de este trabajo
consultó a cada uno de los siete docentes que imparten e impartieron la cátedra de la asignatura
de matemática financiera para los estudiantes de la CCA de la ULEAM. En dicha tabulación se
pudo constatar el cumplimiento de las estrategias metodológicas para el desarrollo del trabajo
autónomo en la asinatura en cuestión, la cual arrojó resultados en mayor porcentaje negativos
67,35% (33 respuestas negativas) lo cual da paso a la propuesta establecida en la investigación.
El uso correlacionado de las estrategias metodológicas para la enseñanza de la asignatura de
matemática financiera dentro de la carrera de contabildad y auditoría permitirá mejorar y guiar
tanto a los estudiantes como a los docentes que imparten la asignatura mencionada, y con ello se
potenciará el trabajo autónomo de los mismos dotándolo de una herramienta requerida durante un
buen tiempo dentro de la carrera.
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
79
Tabla 5.- Cumplimiento de las estrategias metodológicas requeridas para desarrollo del Trabajo Autónomo del
estudiante en la asignatura de Matemática Financiera por parte del docente de la CCA de la ULEAM.
La mayoría de las respuestas negativas determinada por los docentes al no incidir directamente en
el cumplimiento de las diferentes estrategias metodológicas que se utilizan para la asignatura
objeto de estudio.
Docentes
1
2
3
4
5
6
7
Estrategias metodológicas
S
N
S
N
S
N
S
N
S
N
S
N
S
N
Clases Teóricas: Realiza con normalidad las clases
teóricas en el tiempo requerido para los estudiantes de
tercero y cuarto, exponiendo los contenidos requeridos
para cada semestre.
X
X
X
X
X
X
X
Clases Prácticas: Permiten mostrar cómo deben
actuar los estudiantes acercándolos a la realidad
profesional. Aplica estudio de casos, simulación
práctica de los problemas.
X
X
X
X
X
X
X
Trabajo autónomo: Utiliza usted el portafolio
electrónico de matemática financiera en donde el
estudiante desarrolla problemas, ejercicios prácticos,
construye enunciados en casos prácticos, recolecta
información requerida, genera ensayos.
X
X
X
X
X
X
X
Aprendizaje basado en problemas (ABP): Utiliza
este método de aprendizaje basado en el principio de
usar problemas como punto de partida para las
adquisiciones e integración de nuevos conocimientos.
X
X
X
X
X
X
X
Aprendizaje Cooperativo (AC): Formula
didácticamente la necesidad de que los estudiantes
trabajen juntos, aprovechando al máximo la
interacción entre ellos generando interdependencia,
responsabilidad individual y grupal, habilidades
sociales
X
X
X
X
X
X
X
Tutorías: Aplica tutorías individuales y/o grupales,
orientando a los estudiantes dependiendo de la
dificultad en el proceso de adquisición de
competencias genéricas y específicas de la asignatura.
X
X
X
X
X
X
X
Evaluación: Al finalizar el parcial, el estudiante
realizará un examen teórico práctico, para valorar el
grado de adquisición de las competencias genéricas y
específicas objeto de la asignatura más alcanzar el
logro de aprendizaje requerido.
X
X
X
X
X
X
X
Fuente: Docentes de la carrera de Contabilidad y Auditoría de la Uleam en los períodos destacados para la investigación.
Donde destacan que el 67,35% de las respuestas son negativas (33) y el restante porcentaje 32,65% son positivas (16),
destacando la necesidad de mejorar las características metodológicas implementadas en la asignatura de matemática
financiera. Por ende es necesario ejecutar la propuesta planteada dentro de la investigación. Aportes de Barrows (1986);
Johnson &Johnson (2002). Elaborado por: Juan Carlos Cevallos Hoppe.
CONCLUSIONES
La investigación, apunta a proponer los lineamientos necesarios para que exista la orientación
metodológica para el trabajo autónomo de los estudiantes de la carrera en mención, por ello se
toma como objeto de estudio la asignatura de matemática financiera para que sirva como modelo
para el resto de las asignaturas posicionadas en la malla curricular.
Juan Carlos Cevallos Hoppe
80
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
Al diagnosticar la situación real que presentaron 100 estudiantes de tercero y cuarto semestre en
los períodos académicos 2014-2015 (2) y 2015-2016 (1 y 2), mostrando características muy
interesantes dentro de los ítems de las dos variables asumidas en esta investigación, permitieron
determinar los elementos que deben formar parte de los lineamientos para el diseño de estrategias
metodológicas en torno al trabajo autónomo de los estudiantes en mención y de las cuales se
presentan las siguientes conclusiones:
- En las universidades del país no ha existido cultura institucional en la formación del
profesorado (a excepción de ciencias de la educación), la práctica de la docencia ha
recaído en profesionales expertos en sus disciplinas (contable, auditable, administrativa,
legislativa, etc.) pero con ninguna o escasa formación didáctica.
- Los facilitadores de la asignatura objeto de estudio de la CCA, deben implementar
diversas metodologías docentes con criterios definidos de evaluación.
- Los estudiantes deben incidir en el razonamiento matemático, más que los procedimientos
de simple memorización cuando trabajan autónomamente.
- Los estudiantes destacan la formación de conjeturas, la invención y resolución
problémica como metodología pertinente en el desarrollo del trabajo autónomo de la
asignatura de matemática financiera, descartando el énfasis en la búsqueda mecánica de
las respuestas (mecanicismo).
- El estudiante relaciona la conexión de las características financieras y sus aplicaciones,
frente a la visión de la matemática como un cuerpo aislado de conceptos, teorías, axiomas
y procedimientos.
- La medición del aprendizaje significativo está íntimamente relacionada con la
consecución del logro de aprendizaje en función de la asignatura impartida.
- La generación de problemas con sus respectivos enunciados permiten generar habilidades
y destrezas en los estudiantes de los diferentes semestres, dejando atrás las características
tradicionales en las tareas de matemática que conllevaba la resolución general de un
determinado número de ejercicios entregado por el docente y la copia matricial de los
mismos.
- La tutoría permitirá superar la labor expositiva para tomar el papel orientador en la
formación estudiantil en la carrera. Todo trabajo autónomo necesita de una aplicación
implícita de la tutoría.
- De la totalidad de los cincuenta y cuatro ítems dispuestos a los estudiantes de la CCA
analizados en los seis indicadores de la variable número dos; cuarenta y nueve resultaron
representativos (alta significación estadística) debido a su poca dispersión, referenciando
las características propias de los estudiantes encuestados. Estos valores fueron
corroborados en la prueba no paramétrica de Chi-cuadrado con un nivel de significancia p
0,0787 (si el valor de p es menor a 0,0787 existe mayor relación entre los items de las
variables).
- La prueba no paramétrica Kruskal-Wallis arrojó resultados con mayor indice de
dispersión debido a la característica de comprobación dada en el grupo de datos
provenientes de la población estudiantil en la CCA, aceptando que k muestras
Mikarimin. Revista Científica Multidisciplinaria ISSN 2528-7842
EVALUACIÓN DE LAS ESTRATEGIAS METODOLÓGICAS DEL TRABAJO AUTONÓMO
© Centro de Investigación y Desarrollo. Universidad Regional Autónoma de Los Andes - Extensión Santo Domingo. Ecuador.
81
independientes de los ítems se relacionaban entre sí. De los cincuenta y cuatro ítems en
los cuatro indicadores la prueba arrojó solo cuatro representativos para la investigación,
destacando que en los dos últimos indicadores el grado de dispersión fue muy alto y nada
representativo debido a la subjetividad del aspecto del razonamiento lógico y la
creatividad.
- El indicador que describe las falencias cognitivas en el trabajo autónomo determina el
poco dominio del léxico y el desconocimiento de la simbología requerida para el dominio
de los axiomas matemáticos, considerando que dichos problemas repercutieron en el nivel
básico, medio y superior de los estudiantes considerados en la investigación.
- La poca independencia para lograr el conocimiento por parte del discente desde temprana
edad, genera aspectos heterónomos que han primado durante mucho en la educación
ecuatoriana.
- Los estudiantes presenta dificultades para seguir las instrucciones dadas por los docentes
en el aula, y la estructuración del análisis de las respuestas obtenidas en los problemas,
requiriendo necesariamente de recursos didácticos de enseñanzas para la asignatura.
- La aplicación de sistemas de evaluación acorde a la adquisición de conocimientos dentro
de la asignatura permitirá interrelacionar las estrategias de aprendizaje y encausar de
mejor manera la adquisición de conocimientos.
- Los recursos didácticos para la enseñanza aportan al desarrollo del aprendizaje efectivo en
los estudiantes.
El uso correlacionado de las estrategias metodológicas para la enseñanza de la asignatura de
matemática financiera dentro de la carrera de contabildad y auditoría permitirá mejorar y guiar
tanto a los estudiantes como a los docentes que imparten la asignatura mencionada, y con ello se
potenciará el trabajo autónomo de los mismos dotándolo de una herramienta requerida durante un
buen tiempo dentro de la carrera.
REFERENCIAS BIBLIOGRÁFICAS
Álvarez; González & García (2008). La motivación y los métodos de evaluación como variables fundamentales para
construir el aprendizaje autónomo. Revista de Docencia Universitaria Núm. 2 htpp://www.um.es/ead/Red_U/2/
Castillo-Parra, G., Gómez, E., & Ostrosky-Solís, F. (2009). Relación entre las funciones cognitivas y el nivel de
rendimiento académico en niños. Revista Neuropsicología, Neuropsiquiatría y Neurociencias, 9(1), 41-54.
Cevallos Hoppe, J. (2015). Metodología aplicada a la enseñanza de la Matemática Financiera. Problemas de
contextualización práctica. Editorial Académica Española. ISBN: 978365909575-7.
Coll, C. (2001). Constructivismo y Educación: La concepción constructivista de la enseñanza y del aprendizaje. En:
Coll: Palacios & Marchesi (Comps). Desarrollo psicológico y educación. 2. Psicología de la educación. Madrid.
Alianza, 2001: 157-188.
De Miguel Díaz, M. (2006). Metodologías para optimizar el aprendizaje: segundo objetivo del Espacio Europeo de
Educación Superior. Revista interuniversitaria de formación del profesorado, (57), 71-92.
Gairín, J. (2004). La tutoría académica en el escenario Europeo de Educación Superior. Revista Interuniversitaria de
formación del profesorado. V.18 (1) pp. 66-77.
García Lopera; Luque Domínguez & Rodríguez Díaz. La enseñanza de las Matemáticas Financieras 2011. 4.
2011. eXtoikos
Juan Carlos Cevallos Hoppe
82
Revista Mikarimin. Publicación cuatrimestral. Vol. 6, Año 2020, Edición Especial
Herrera, L. & Gallardo, M.A. (2006). Diseño de cuestionario de evaluación para el alumnado participante en
proyectos de Innovación Tutorial. En Gallardo, MA. I Congreso Internacional de Psicopedagogía: Ámbitos de
intervención de Psicopedagogo. Granada: Proyecto de innovación docente “Plan de mejora y evaluación del
practicum de psicopedagogía en Melilla”, 2006: 1-18.
Herrera, L. (2007). Experiencia piloto de implantación del Sistema de Transferencia de Créditos Europeos (ECTS)
en la titulación de maestro. Valoración del profesorado y el alumnado participante, En. ROIG, R. (Dir.). Investigar el
cambio curricular en el Espacio Europeo de Educación Superior. Alicante: Marfil: 159-178.
Morales, P. & Landa, V., (2004). Aprendizaje basado en problemas. ISSN0717196X. Recuperado de http://campus.
Usal. es/~ ofeees/NUEVAS_METODOLOGIAS/ABP/13.
Parra Pineda, D.M. (2008). Manual de estrategias de enseñanza aprendizaje. Servicio Nacional de Aprendizaje.
SENA. Medellín.
Pozo, J.I. (1996). No es oro todo lo que reluce ni se construye (igual) todo lo que se aprende: contra el
reduccionismo constructivista. Anuario de Sicología.
Rama, C. (2006). La tercera reforma de la educación superior en América Latina. Buenos Aires: Fondo de cultura
económica.
Reigeluth, Ch. (2000). Teoría instruccional y tecnología para el nuevo paradigma de la educación.
reigelut@indiana.edu. Universidad de Indiana. RED. Revista de Educación a Distancia. Número 32
http://www.um.es/ead/red/32
Rodríguez Palermo, M.L. (2004). Teoría del aprendizaje significativo. Universidad Pública de Navarra, Pamplona,
España, pp. 535-544. ISBN: 84-9769-064-8.
Sales Ciges, A. (2006). La formación inicial del profesorado ante la diversidad: una propuesta metodológica para el
nuevo espacio europeo de educación superior. Revista interuniversitaria de formación del profesorado, (57), 200-
218.
Urbina Cienfuegos, S. (S/F). Estrategias metodológicas y didácticas en la docencia universitaria.
https://independent.academia.edu/SairaUrbinaCienfuegos


Contador de visitas: Resumen | 42 | y

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2020 Juan Carlos Cevallos Hoppe

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Publicación bajo licencia

Grupo 2. Clasificación de Revistas Científicas de la República de Cuba.

Cátálogo 1.0 (36/36 criterios cumplidos).

Procedencia geográfica de los lectores de Revista Mikarimin

Map