EVALUACIÓN DE UN HUMEDAL ARTIFICIAL AIREADO EN EFLUENTE DE UNA PLANTA DE TRATAMIENTO DE AGUAS RESIDUALES DE LA INDUSTRIA ATUNERA, MANTA, MANABÍ, ECUADOR

Damián Eduardo Cedeño López, Julio Abel Loureiro Salabarría, María Margarita Delgado Demera, Carlos Ricardo Delgado Villafuerte, Piero Cristóbal Fajardo Navarrete

Resumen


Los humedales artificiales se han implementado como medida alternativa a los procesos convencionales de tratamiento de aguas residuales, principalmente por sus bajos costos de construcción y mantenimiento; sin embargo, hay pocas investigaciones en efluentes líquidos de la industria atunera y no existen investigaciones evaluando el tratamiento de estas aguas con microorganismos aislados. Se evaluó el comportamiento de un humedal artificial aireado utilizando Chrysopogon zizanioides, Saccharomyces cerevisiae y Trichoderma harzianum, en efluente de una planta de tratamiento de aguas residuales de la industria atunera. La investigación estuvo sujeta a un diseño completamente al azar (DCA), donde se aplicó un control (P0) y 4 tratamientos (P1, P1M1, P1M2, P1M1M2) con tres réplicas cada uno, proporcionando un total de 15 unidades experimentales. Los tratamientos, P1 (Chrysopogon zizanioides), P1M1 (C. zizanioides + 1.5 ml/l de S. cerevisiae con 4.3x108 ufc/ml), P1M2 (C. zizanioides + 1.5 ml/l de T. harzianum con 1.95x108 esporas/ml) y P1M1M2 (C. zizanioides + 1.5 ml/l mezcla de S. cerevisiae con 4.3x108 ufc/ml y T. harzianum con 1.95x108 esporas/ml). En los tratamientos (P1, P1M1, P1M2, P1M1M2) se obtuvo una remoción de DBO promedio de 99.68%, el PT incrementó desde 3 mg/l hasta 4.95 mg/l. El pH disminuyó en todos los tratamientos excepto P1M2 respecto su valor inicial 6.3. La remoción más baja de NTK fue P1 con 64.56% y la más alta de 73.81% para P1M1M2. El efecto más apreciable fue la remoción de NTK, posiblemente la acción estimulante de C. zizanioides en la producción de ureasas y proteasas, la producción de aminoácidos de S. cereviciae y la actividad enzimática de T. harzianum, lograron que tratamientos donde estas variables se involucraron, removieran un mayor porcentaje.

PALABRAS CLAVE: Chrysopogon zizanioides; humedal artificial aireado; Saccharomyces cerevisiae; Trichoderma harzianum.

EVALUATION OF AN AERATED ARTIFICIAL WETLAND IN EFFLUENT OF A WASTEWATER TREATMENT PLANT OF THE TUNA INDUSTRY, MANTA, MANABÍ, ECUADOR

ABSTRACT

Constructed Wetlands have been implemented as an alternative option to conventional wastewater treatment processes, mainly due to their low construction and maintenance costs; however, there is little research on liquid effluents from the tuna industry and there is no research evaluating the treatment with isolated microorganisms. To evaluate the behavior of aerated constructed wetland using Chrysopogon zizanioides, Saccharomyces cerevisiae and Trichoderma harzianum, in effluent from a wastewater treatment plant of the tuna industry. It was subject to a Completely Random Design (CRD), where a control (P0) and 4 treatments were applied (P1, P1M1, P1M2, P1M1M2) with three replicates each, providing a total of 15 experimental units. The treatments specifically were P1 (C. zizanioides), P1M1 (C. zizanioides + 1.5 ml/l of S. cerevisiae with 4.3x108 cfu/ml), P1M2 (C. zizanioides + 1.5 ml/l of T. harzianum with 1.95x108 spores/ml) and P1M1M2 (C. zizanioides + 1.5 ml/l mixture of S. cerevisiae with 4.3x108 cfu/ml and T. harzianum with 1.95x108 spores/ml). Results. After the treatments, an average BOD removal of 99.68% was obtained, TP increased from 3.34 to 4.95 mg/l. The pH decreased in all the treatments except P1M2 with respect to its initial value 6.3. The lowest TKN removal was P1 with 64.56% and the highest of 73.81% for P1M1M2. The most noticeable effect was the removal of TKN, possibly the stimulating action of C. zizanioides in the production of ureases and proteases, the production of amino acids of S. cereviciae and the enzymatic activity of T. harzianum, which allowed treatments where these variables they got involved, removed a higher percentage.

KEYWORDS: aerated constructed wetland; Chrysopogon zizanioides; Saccharomyces cerevisiae; Trichoderma harzianum.

 

Texto completo:

DOC PDF HTML

Referencias


Aissaoui, N., J. M. Chobert., T. Haertlé, M. N. Marzouki & F. Abidi. 2017. Purification and biochemical characterization of a neutral serine protease from Trichoderma harzianum. Use in antibacterial peptide production from a fish by-product hydrolysate. Applied biochemistry and biotechnology 182 (2): 831-845. DOI: 10.1007/s12010-016-2365-4

Almeida, A., F. Carvalho., M. J. Imaginário., I. Castanheira., A. R. Prazeres & C. Ribeiro. 2017. Nitrate removal in vertical flow constructed wetland planted with Vetiveria zizanioides: Effect of hydraulic load. Ecological engineering 99: 535-542. DOI:10.1016/j.ecoleng.2016.11.069

Awasthi, A. K., A. K. Pandey & J. Khan. 2017. Potential of fungus Trichoderma harzianum for toxicity reduction in municipal solid waste leachate. International Journal of Environmental Science and Technology 14 (9): 2015-2022. DOI: 10.1007/s13762-017-1271-9

Badejo, A. A., D. O. Omole., J. M. Ndambuki & W. K. Kupolati. 2017. Municipal wastewater treatment using sequential activated sludge reactor and vegetated submerged bed constructed wetland planted with Vetiveria zizanioides. Ecological Engineering 99: 525-529. DOI:10.1016/j.ecoleng.2016.11.012

Cárdenas, C., S. Yabroudi., A. Benítez., K. Páez., T. Perruolo., N. Angulo., I. Araujo & L. Herrera. 2012. Desempeño de un reactor biológico secuencial (RBS) en el tratamiento de aguas residuales domésticas. Revista Colombiana de Biotecnología 14 (2): 111-120. DOI: 10.15446/rev.colomb.biote

Corsino, S. F., M. Capodici., M. Torregrossa & G. Viviani. 2017. Physical properties and Extracellular Polymeric Substances pattern of aerobic granular sludge treating hypersaline wastewater. Bioresource technology 229: 152-159. DOI: 10.1016/j.biortech.2017.01.024

Cristóvão, R. O., C. M. Botelho., R. J. Martins., J. M. Loureiro & R. A. Boaventura. 2015. Fish canning industry wastewater treatment for water reuse–a case study. Journal of Cleaner Production 87: 603-612. DOI: 10.1016/j.jclepro.2014.10.076

Cui, Y., S. Wang & J. Li. 2009. On-line Monitoring for Phosphorus Removal Process and Bacterial Community in Sequencing Batch Reactor. Chinese Journal of Chemical Engineering 17 (3): 484-92. DOI: 10.1016/S1004-9541(08)60235-9

Ching, Y. C., & G. Redzwan. 2017. Biological Treatment of Fish Processing Saline Wastewater for Reuse as Liquid Fertilizer. Sustainability 9 (7): 1062. DOI: 10.3390/su9071062

Choudhury, B., M. Kalita & P. Azad. (2010). Distribution of arbuscular mycorrhizal fungi in marshy and shoreline vegetation of Deepar Beel Ramsar Site of Assam, India. World Journal of Microbiology and Biotechnology 26 (11): 1965-1971. DOI 10.1007/s11274-010-0377-8

Chyan, J., C.J. Lin., Y. Lin & Y. Chou. 2016. Improving removal performance of pollutants by artificial aeration and flow rectification in free water surface constructed wetland. International Biodeterioration & Biodegradation 113: 146-154. DOI: 10.1016/j.ibiod.2016.04.034

Darajeh, N., A. Idris., H. R. Masoumi., A. Nourani., P. Truong & N. A. Sairi. 2016. Modeling BOD and COD removal from Palm Oil Mill Secondary Effluent in floating wetland by Chrysopogon zizanioides (L.) using response surface methodology. Journal of environmental management 181: 343-352. DOI: 10.1016/j.jenvman.2016.06.060

Delgadillo, O., A. Camacho., L. Pérez & M. Andrade. 2010. Depuración de aguas residuales por medio de humedales artificiales. Nelson Antequera, Cochabamba, Bolivia.

Fan, J., S. Liang, B. Zhang & J. Zhang. 2013. Enhanced organics and nitrogen removal in batch-operated vertical flow constructed wetlands by combination of intermittent aeration and step feeding strategy. Environmental Science and Pollution Research 20: 2448-2455. DOI: 10.1007/s11356-012-1130-7

Hao, X., Q. Wang., J. Zhu & M. Van Loosdrecht. 2010. Microbiological Endogenous Processes in Biological Wastewater Treatment Systems. Critical Reviews in Environmental Science and Technology 40 (3): 239-265. DOI: 10.1080/10643380802278901

He, H., Y. Chen., X. Li., Y. Cheng., C. Yang & G. Zeng. 2017. Influence of salinity on microorganisms in activated sludge processes: a review. International Biodeterioration & Biodegradation 119: 520-527. DOI: 10.1016/j.ibiod.2016.10.007

Hultberg, M. & H. Bodin. 2017. Fungi-based treatment of brewery wastewater-biomass production and nutrient reduction. Applied microbiology and biotechnology 101 (11): 4791-4798. DOI: 10.1007/s00253-017-8185-9

Huma, I. & M. Ilyas. 2017. The performance of the intensified constructed wetlands for organic matter and nitrogen removal: A review. Journal of Environmental Management 198 (1): 372-383. DOI:10.1016/j.jenvman.2017.04.098

INEN (Instituto Ecuatoriano de Normalización). 2013. Norma 2176: Agua. calidad del agua. muestreo. Técnicas de muestreo. Disponible en línea en: archive.org/stream/ec.nte.2176.1998#page/n0

Jemli, M., F. Karray., F. Feki., S. Loukil., N. Mhiri., F. Aloui & S. Sayadi. 2015. Biological treatment of fish processing wastewater: A case study from Sfax City (Southeastern Tunisia). Journal of Environmental Sciences 30: 102-112. DOI: 10.1016/j.jes.2014.11.002

Kam, S.B., A.M. Abedian & H.A. Younesi. 2012. Production of single cell protein from stickwater of fish meal production factories by Chlorella sp., Pseudomonas aeruginosa and Saccharomyces cerevisiae. Iranian Journal of Biology 25 (2): 158-71. ibs.org.ir/article-1-76-en.html

Kong, L., Y. Wang., L. Zhao & Z. Chen. 2009. Enzyme and root activities in surface-flow constructed wetlands. Chemosphere 76 (5): 601-608. doi:10.1016/j.chemosphere.2009.04.056

Kredics, L., Z. Antal., A. Szekeres., L. Hatvani., L. Manczinger., C. S. Vágvölgyi & E. Nagy. 2005. Extracellular proteases of Trichoderma species. Acta microbiologica et immunologica hungarica 52 (2): 169-184. DOI:10.1556/AMicr.52.2005.2.3

Liang, Y., H. Zhu., G. Bañuelos., B. Yan., Q. Zhou., X. Yu & X. Cheng. 2017. Constructed wetlands for saline wastewater treatment: A review. Ecological Engineering 98: 275-285. DOI:10.1016/j.ecoleng.2016.11.005

Lopez, C., M. Pons & E. Morgenroth. 2006. Endogenous processes during long-term starvation in activated sludge performing enhanced biological

Lv, T., P. Carvalho., L. Zhang., Y. Zhang., M. Button., C. Arias., K. Weber & H. Brix. 2017. Microbial community metabolic function in constructed wetland mesocosms treating the pesticides imazalil and tebuconazole. Ecological Engineering 98: 378-387. DOI:10.1016/j.ecoleng.2016.07.004.

Marín, J., C. Chinga., A. Velásquez., P. González & L. Zambrano. 2015. Tratamiento de aguas residuales de una industria procesadora de pescado en reactores anaeróbicos discontinuos. Ciencia e Ingeniería Neogranadina 25 (1): 27-42. DOI: https://doi.org/10.18359/rcin.431

Mudhiriza, T., F. Mapanda., B.M. Mvumi & M. Wuta. 2015. Removal of nutrient and heavy metal loads from sewage effluent using vetiver grass, 51 Chrysopogon zizanioides (L.) Roberty. Water SA 41 (4): 457-463. DOI:10.4314/WSA.V41I4.04

Nemerow, N. 1977. Aguas residuales industriales: teorías, aplicaciones y tratamiento. H. Blume Ediciones, Madrid, España. 572 p.

phosphorus removal. Water Research 40 (8): 1519-1530. DOI:10.1016/j.watres.2006.01.040

Pires, J. F., G. M. Ferreira., K. C. Reis., R. F. Schwan & C. F. Silva. 2016. Mixed yeasts inocula for simultaneous production of SCP and treatment of vinasse to reduce soil and fresh water pollution. Journal of environmental management 182: 455-463. DOI: 10.1016/j.jenvman.2016.08.006

Pradhan, S., L. Fan & F. A. Roddick. 2015. Removing organic and nitrogen content from a highly saline municipal wastewater reverse osmosis concentrate by UV/H2O2–BAC treatment. Chemosphere 136: 198-203. DOI:10.1016/j.chemosphere.2015.05.028

Ramos, N., A. Borges., G. Gonçalves & A. Matos. 2017. Tratamento de águas residuárias de suinocultura em sistemas alagados construídos, com Chrysopogon zizanioides e Polygonum punctatum cultivadas em leito 52 de argila expandida. Engenharia Sanitaria e Ambiental 22 (1): 123-132. DOI:10.1590/s1413-4152201687067

Raper, E., R. Fisher., D. Anderson., T. Stephenson & A. Soares 2018. Alkalinity and external carbon requirements for denitrification-nitrification of coke wastewater. Environmental Technology 39 (17): 2266-2277. DOI: 10.1080/09593330.2018.1437779

Sadhasivam, S., S. Savitha & K. Swaminathan. 2010. Deployment of Trichoderma harzianum WL1 laccase in pulp bleaching and paper industry effluent treatment. Journal of Cleaner Production 18 (8): 799-806. DOI:10.1016/j.jclepro.2009.11.014

Sharma, B. & R. Ahlert. 1977. Nitrification and nitrogen removal. Water Research 11 (10): 897-925. DOI:10.1016/0043-1354(77)90078-1

TULSMA (Texto Unificado De Legislación Secundaria De Medio Ambiente). 2015. Norma de calidad ambiental y de descarga de efluentes: recurso agua. Ecuador.

Val del Rio, A., A. Pichel., N. Fernandez-Gonzalez., A. Pedrouso., A. Fra-Vázquez., N. Morales.,... & A. Mosquera-Corral. 2018. Performance and microbial features of the partial nitritation-anammox process treating fish canning wastewater with variable salt concentrations. Journal of environmental management 208: 112-121. DOI: 10.1016/j.jenvman.2017.12.007

Valdéz, H. S. 2006. Caracterización proximal y tratamiento enzimático del agua de cola generada por una industria productora de harina de pescado en Sonora (Tesis doctoral). Centro de Investigación en Alimentación y Desarrollo AC Hermosillo, Sonora, México.

Vymazal, J. 2007. Removal of nutrients in various types of constructed wetlands. Science of the total environment 380(1-3): 48-65. DOI:10.1016/j.scitotenv.2006.09.014

Vymazal, J. 2013. Emergent plants used in free water surface constructed wetlands: a review. Ecological engineering 61: 582-592. DOI:10.1016/j.ecoleng.2013.06.023

Wang, X., Y. Tian., X. Zhao., S. Peng., Q. Wu & L. Yan. 2015. Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond constructed wetland systems. Bioresource Technology 198: 7-15. DOI:10.1016/j.biortech.2015.08.150

Wu, H., J. Zhang., H.H. Ngo., W. Guo., Z. Hu., S. Liang., J. Fan & H. Liu. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresource technology 175: 594-601. DOI:10.1016/j.biortech.2014.10.068

Wu, S., P. Kuschk., H. Brix., J. Vymazal & R. Dong. 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Research 57: 40-55. DOI:10.1016/j.watres.2014.03.020

Zapater, M., E. Gashugi., D. P. Rousseau., M. R. Alam., T. Bayansan & P. N. Lens. 2014. Effect of aeration on pollutants removal: biofilm activity and protozoan abundance in conventional and hybrid horizontal subsurface-flow constructed wetlands. Environmental Technology 35 (16): 2086-2094. DOI:10.1080/09593330.2014.893024

Zhouying, X. U., B. A. Yihui., Y. Jiang., X. Zhang & L.I. Xiaoying. 2016. Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: a review. Pedosphere 26 (5): 592-617. DOI: 10.1016/S1002-0160(15)60067-4




Contador de visitas: Resumen | 26 | y DOC | 0 | PDF | 4 | HTML | 13 |

Enlaces refback

  • No hay ningún enlace refback.


Copyright (c) 2020 Damián Eduardo Cedeño López, Julio Abel Loureiro Salabarría, María Margarita Delgado Demera, Carlos Ricardo Delgado Villafuerte, Piero Cristóbal Fajardo Navarrete

Licencia de Creative Commons
Este obra está bajo una licencia de Creative Commons Reconocimiento 4.0 Internacional.

Publicación bajo licencia

Grupo 2. Clasificación de Revistas Científicas de la República de Cuba.

Cátálogo 1.0 (36/36 criterios cumplidos).

Procedencia geográfica de los lectores de Revista Mikarimin

Map